3 research outputs found

    Optimal Investment in the Development of Oil and Gas Field

    Full text link
    Let an oil and gas field consists of clusters in each of which an investor can launch at most one project. During the implementation of a particular project, all characteristics are known, including annual production volumes, necessary investment volumes, and profit. The total amount of investments that the investor spends on developing the field during the entire planning period we know. It is required to determine which projects to implement in each cluster so that, within the total amount of investments, the profit for the entire planning period is maximum. The problem under consideration is NP-hard. However, it is solved by dynamic programming with pseudopolynomial time complexity. Nevertheless, in practice, there are additional constraints that do not allow solving the problem with acceptable accuracy at a reasonable time. Such restrictions, in particular, are annual production volumes. In this paper, we considered only the upper constraints that are dictated by the pipeline capacity. For the investment optimization problem with such additional restrictions, we obtain qualitative results, propose an approximate algorithm, and investigate its properties. Based on the results of a numerical experiment, we conclude that the developed algorithm builds a solution close (in terms of the objective function) to the optimal one

    DNA fragments binding CTCF in vitro and in vivo are capable of blocking enhancer activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome.</p> <p>Results</p> <p>Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV<it>-tk</it>) gene in a vector expressing also the <it>neo</it><sup>R </sup>gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations.</p> <p>Conclusions</p> <p>We demonstrated that all sequences identified by their CTCF binding both <it>in vitro </it>and <it>in vivo </it>had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells.</p
    corecore